Type	R12	R81/R91	XR12
Contacts			
Contact material/contact gap	$\mathrm{AgSnO}_{2} / 3 \mathrm{~mm}$	$\mathrm{AgSnO}_{2} / 2 \mathrm{~mm}$	$\mathrm{AgSnO}_{2} / 3 \mathrm{~mm}{ }^{1)}$
Spacing of control connections/contact	$>6 \mathrm{~mm}$	$>6 \mathrm{~mm}$	$>6 \mathrm{~mm}$
Test voltage contact/contact Test voltage control connections/contact	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$
Rated switching capacity	$\begin{aligned} & 16 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ & 10 \mathrm{~A} / 400 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ & 6 \mathrm{~A} / 400 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 25 \mathrm{~A} / 250 \mathrm{~V} \mathrm{AC} \\ & 16 \mathrm{~A} / 400 \mathrm{VAC} \end{aligned}$
230 V LED lamps	up to $200 W^{51}$	up to $200 \mathrm{~W}^{5}$	up to $200 W^{5}$
Incandescent lamp and halogen lamp load 230V ${ }^{2 /}$	2300 W	2300 W	2300 W
Fluorescent lamp load with KVG* in lead-lag circuit or non compensated	2300VA	2300 VA	3600 VA
Fluorescent lamp load wih KVG* shunt-compensated or with EVG*	500 VA	500 VA	1000 VA
Compact fluorescent lamps with EVG* and energy saving lamps ESL	I on $\leq 140 \mathrm{~A} / 10 \mathrm{~ms}^{3}{ }^{3}$	$1 \mathrm{on} \leq 70 \mathrm{~A} / 10 \mathrm{~ms}^{3}{ }^{3}$	I on $\leq 140 \mathrm{~A} / 10 \mathrm{~ms}^{3 /}$
HOL and HOI non compensated	500W	-	500W
Max. switching current DC1: $12 \mathrm{~V} / 24 \mathrm{~V}$ DC	8 A	8 A	12A
Life at rated load, $\cos \varphi=1$ or incandescent lamps 1000 W at $100 / \mathrm{h}$	$>10^{5}$	$>10{ }^{5}$	$>10^{5}$
Life at rated load, $\cos \varphi=0.6$ at $100 / \mathrm{h}$	$>4 \times 10^{4}$	$>4 \times 10^{4}$	$>4 \times 10^{4}$
Max. operating cycles	$10^{3} / \mathrm{h}$	$10^{3} / \mathrm{h}$	$10^{3} / \mathrm{h}$
Closing time	$10-20 \mathrm{~ms}$	$10-20 \mathrm{~ms}$	$10-20 \mathrm{~ms}$
Opening time	$5-15 \mathrm{~ms}$	$5-15 \mathrm{~ms}$	$5-15 \mathrm{~ms}$
Switch position indication	yes	yes	yes
Manual control	yes	yes	yes
Maximum conductor cross-section	$6 \mathrm{~mm}{ }^{2}$	$4 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$
Two conductors of same cross-section	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$
Screw head	slotted/crosshead, pozidriv	slotted/crosshead, pozidriv	slotted/crosshead, pozidriv
Type of enclosure/terminals	IP50/IP20	IP50/IP20	IP50/IP20
Solenoid System			
Time on	100\% ${ }^{4}$	100\%	100\% ${ }^{4}$
Max./min. temperature at mounting location	$+50^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} /-5^{\circ} \mathrm{C}$
Control voltage range	0.9 to $1.1 \times$ rated voltage	0.9 to 1,1 x rated voltage	0.9 to $1.1 \times$ rated voltage
Coil power loss AC+DC $\pm 20 \%$	1- and 2-pole: 1.9 W 4-pole: 4W	$\begin{aligned} & \text { R81: } 5 \mathrm{~W} \\ & \text { R91: } 2,5 \mathrm{~W} \end{aligned}$	1- and 2-pole: 1,9 W 4-pole: 4 W
Total power loss with continous excitation at rated voltage and rated contact load	1-pole: 4W, 2-pole: 6 W 4-pole: 12 W	$\begin{aligned} & \text { 1-pole: } 7 \mathrm{~W} \\ & \text { 2-pole: } 9 \mathrm{~W} \\ & \hline \end{aligned}$	1-pole: 4W, 2-pole: 6W 4-pole: 12 W
Max. parallel capacitance (length) of control lead	$0.06 \mu \mathrm{~F}$ (ca. 200 m)	$0.06 \mu \mathrm{~F}$ (ca. 200 m)	$0.06 \mu \mathrm{~F}$ (ca. 200 m)
Max. voltage induced at the control inputs	$0.2 \times$ rated voltage	$0.2 \times$ rated voltage	$0.2 \times$ rated voltage

[^0]To comply with DIN VDE 0100-443 and DIN VDE 0100-534, a Type 1 or Type 2 surge protection device (SPD) must be installed.

[^0]: *EVG = electronic ballast units; KVG = conventional ballast units
 ${ }^{11}$ Conctact distance of the NC contacts 1.2 mm .
 ${ }^{2)}$ Contact spacing of NC contacts 1.2 mm .
 ${ }^{3 /}$ A 40 -fold inrush current must be calculated for electronic ballast devices. For steady loads of 1200 W or 600 W use the current-limiting relay SBR12 or SBR61. See chapter 14, page 14-8.
 ${ }^{4}$ Whenever several impulse switches are continuously energised make sure there is adequate ventilation as a function of the calculated power loss.
 ${ }^{5}$) Due to different lamp electronics and depending on the manufacturer, the maximum number of lamps may be limited, especially if the wattage of the individual lamps is very low (e.g. with 2 W LEDs).

