Type	FD62NP	FD62NPN	$\begin{aligned} & \text { FR62NP }{ }^{\text {b) }} \\ & \text { FL62NP } \\ & \text { FDH62NP } \end{aligned}$	$\begin{aligned} & \text { FR62 }^{\text {b) }} \\ & \text { FL62 } \end{aligned}$	FJ62NP
Contacts					
Contact material/contact gap	Power MOSFET	Power MOSFET	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$
Spacing of control connections/contact	-	-	3 mm	6 mm	3 mm
Test voltage control connections/contact	-	-	2000 V	4000 V	2000 V
Rated switching capacity each contact	-	-	10A/250V AC	10A/250V AC	4A/250V AC
Dimmable 230V LED lamps ${ }^{2 \prime}$	Trailing edge up to 200W Leading edge up to 40W	Trailing edge up to 300 W Leading edge up to 100W	up to 200W Ion $\leq 120 \mathrm{~A} / 5 \mathrm{~ms}$	up to 200W I on $\leq 120 \mathrm{~A} / 5 \mathrm{~ms}$	-
Incandescent lamp and halogen lamp load " 230 V , I on $\leq 70 \mathrm{~A} / 10 \mathrm{~ms}$	up to 200W ${ }^{3}$	up to 300W ${ }^{3}$	2000W	2000W	-
Fluorescent lamp load with KVG* in lead-lag circuit or non compensated	-	-	1000 VA	1000 VA	-
Fluorescent lamp load with KVG* shunt-compensated or with EVG*	-	-	500 VA	500 VA	-
Compact fluorescent lamps with EVG* and energy saving lamps	up to 200W ${ }^{2 \prime}$	up to 300W ${ }^{\text {2 }}$	up to $200 W^{2)}$	up to $200 W^{2)}$	
Inductive laod $\cos \varphi=0.6 / 230 \mathrm{~V} \mathrm{AC}$ inrush current $\leq 35 \mathrm{~A}$	-	-	650W	650W	650W
Max. switching current DC1: $12 \mathrm{~V} / 24 \mathrm{~V}$ DC	-	-	-	8A	-
Service life at rated load, $\cos \varphi=1$ or incandescent lamps 500 W at $100 / \mathrm{h}$	-	-	$>10^{5}$	$>10^{5}$	$>10^{5}$
Service life at rated load, $\cos \varphi=0.6$ at 100/h	-	-	$>4 \times 10^{4}$	$>4 \times 10^{4}$	$>4 \times 10^{4}$
Max. operating cyles	-	-	$10^{3} / \mathrm{h}$	$10^{3} / \mathrm{h}$	$10^{3} / \mathrm{h}$
Type of connection	Plug-in terminals				
Minimum conductor cross-section	$0.2 \mathrm{~mm}^{2}$				
Maximum conductor cross-section	$2.5 \mathrm{~mm}^{2}$				
Stripping of the conductor	8-9 mm	$8-9 \mathrm{~mm}$	$8-9 \mathrm{~mm}$	$8-9 \mathrm{~mm}$	$8-9 \mathrm{~mm}$
Type of enclosure/terminals	IP30/IP20	IP30/IP20	IP30/IP20	IP30/IP20	IP30/IP20
Electronics					
Time on	100\%	100\%	100\%	100\%	100\%
Max./min. temperature at mounting location	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$				
Standby loss (active power)	0.6W	0.5W	0.4W	0.4W	0.6 W
Local control current at 230 V control input	3 mA				
Max. parallel capacitance (approx. length) of local control lead at 230 V AC	$30 \mathrm{nF}(100 \mathrm{~m})$	$30 \mathrm{nF}(100 \mathrm{~m})$	$\begin{aligned} & 30 \mathrm{nF}(100 \mathrm{~m}) \\ & \text { FL62NP: } 10 \mathrm{nF}(30 \mathrm{~m}) \end{aligned}$	$30 \mathrm{nF}(100 \mathrm{~m})$	10 nF (30 m)

b) Bistable relay as relay contact. After installation, wait for short automatic synchronisation before teaching-in the wireless pushbuttons.

1) Applies to lamps of max. 150 W .
${ }^{2)}$ Generally applies to 230 V LED lamps and energy saving lamps (ESL). Due to different lamp electronics, switch on/off problems and a restriction in the maximum number of lamps, however, the dimming
ranges may be limited depending on the manufacturer; in particular when the connected load is very low (e.g. with 5 W LEDs).
${ }^{3)}$ No inductive (wound) transformers.

Eltako Wireless is based on the En0cean wireless standard for 868 MHz , frequency 868.3 MHz , data rate $\mathbf{1 2 5} \mathbf{k b p s}$, modulation mode ASK, max. transmit power 7 dBm ($<10 \mathrm{~mW}$).

To comply with DIN VDE 0100-443 and DIN VDE 0100-534, a Type 2 or Type 3 surge protection device (SPD) must be installed.

Sensors Actuators	Pushbuttons, handheld transmitters and remote controls B4, F1, F2, F4, F4T65B, FF8, FFD, FFT55, FHS, FKD, FMH, FMT55, FSTAP, FT55, FTTB	Transmitter modules FASM60 FSM14 FSM60B FSM61 FSU... FTS14EM F4USM61B	Card switch, pull switch and smoke alarm FHMB FKF FRW FRWB FZS	Window/door contact FFKB FFTE FPE FTK FTKB FTKE	Window handle sensor and window/door contact FFG7B mTronic	Motion/ brightness sensors FABH65S FB... FBH...	Brightness sensors FAH60 FAH60B FAH65S FHD60SB FIH65S	Temperature controller/ sensors FFT... FFT60SB FTF65S FTFB FTFSB FTR... FUTH...	Air quality sensor FLGTF
F2L14	X	X		X	X			X	X
F4HK14	X	X		X	X	X^{31}		X ${ }^{11}$	X^{11}
F4SR14-LED	X	X	X	X	X	X	X		
FAE14...	X	X		X	X	$\mathrm{X}^{3)}$		X^{11}	X^{11}
FDG14	X	X		X		X			
FHK14	X	X		X	X	X^{31}		X^{11}	X^{11}
FMS14	X	X	X						
FMZ14	X	X	X	X	X				
FRGBW14	X	X				X	X		
FSB14	X	X		X	X		X		
FSG14/1-10V	X	X		X		X	X		
FSR14...	X	X	X	X	X	X	X		
FTN14	X	X		X	X	X			
FUD14...	X	X		X		X	X		
FAC...	X			X	X	X		X^{11}	X^{11}
FD62...	X	X				X			
FDG62	X	X				X			
FDG71	X	X		X		X			
FFR61-230V	X	X							
FGM	X	X	X	X		$\mathrm{X}^{3)}$			
FHD62NP	X	X		X	X				
FHK61	X	X		X	X	$\mathrm{X}^{3)}$		X^{11}	X^{11}
FJ62...	X	X		X	X				
FKLD61	X	X				X	X		
FL62...	X	X	X			X			
FLC61NP-230V	X	X	X			X	X		
FLD61	X	X				X	X		
FMS61NP-230V	X	X							
FMZ61-230V	X	X	X	X					
FR62...	X	X		X	X				
FRGBW71L	X	X				X	X		
FSB61...	X	X		x	X		X		
FSB71...	X	X		X	X		X		
FSG71/1-10V	X	X		X					
FSHA-230V	X	X		X	X	X^{31}		X^{11}	X^{11}
FSR61...	X								
FSR71...	X	X	X	X	X	x	X		
FSR70S-230V	X	X	X			$\mathrm{X}^{3)}$	X		
FSSA-230V	X	X		X					
FSUD-230V	X	X							
FSVA-230V	X	X		X					
FTN61NP-230V	X	X		X	X	X			
FUA12-230V	X	X	X	X	X	X	X		
FUD61...	X	X				X	X		
FUD71	X	X		X		X	X		
FUD70S-230V	X	X							
FUTH...				X	X				
FWWKW71L	X	X				X	X		

